CYBER SECURITY

What is Cyber Security?

Computer security, cybersecurity or information technology security (IT security) is the protection of computer systems and networks from the theft of or damage to their hardware, software, or electronic data, as well as from the disruption or misdirection of the services they provide.

The field is becoming more important due to increased reliance on computer systems, the Internet and wireless network standards such as Bluetooth and Wi-Fi, and due to the growth of “smart” devices, including smartphones, televisions, and the various devices that constitute the “Internet of Things”. Owing to its complexity, both in terms of politics and technology, cybersecurity is also one of the major challenges in the contemporary world.

Importance of Cyber Security

In today’s connected world, everyone benefits from advanced cyber-defense programs. At an individual level, a cybersecurity attack can result in everything from identity theft, to extortion attempts, to the loss of important data like family photos. Everyone relies on critical infrastructure like power plants, hospitals, and financial service companies. Securing these and other organizations is essential to keeping our society functioning.

Everyone also benefits from the work of cyber-threat researchers, like the team of 250 threat researchers at Talos, who investigate new and emerging threats and cyber attack strategies. They reveal new vulnerabilities, educate the public on the importance of cybersecurity, and strengthen open source tools. Their work makes the Internet safer for everyone.

Types of Cyber Security threats

  1. Phishing is the practice of sending fraudulent emails that resemble emails from reputable sources. The aim is to steal sensitive data like credit card numbers and login information. It’s the most common type of cyber attack. You can help protect yourself through education or a technology solution that filters malicious emails.
  2. Ransomware is a type of malicious software. It is designed to extort money by blocking access to files or the computer system until the ransom is paid. Paying the ransom does not guarantee that the files will be recovered or the system restored.
  3. Malware is a type of software designed to gain unauthorized access or to cause damage to a computer. 
  4. Social engineering is a tactic that adversaries use to trick you into revealing sensitive information. They can solicit a monetary payment or gain access to your confidential data. Social engineering can be combined with any of the threats listed above to make you more likely to click on links, download malware, or trust a malicious source.
  5. SQL (structured language query) injection is a type of cyber-attack used to take control of and steal data from a database. Cybercriminals exploit vulnerabilities in data-driven applications to insert malicious code into a database via a malicious SQL statement. This gives them access to the sensitive information contained in the database.

Recent Cyber Threats

Dridex malware: In December 2019, the U.S. Department of Justice (DoJ) charged the leader of an organized cyber-criminal group for their part in a global Dridex malware attack. This malicious campaign affected the public, government, infrastructure and business worldwide.

Affecting victims since 2014, it infects computers though phishing emails or existing malware. Capable of stealing passwords, banking details and personal data which can be used in fraudulent transactions, it has caused massive financial losses amounting to hundreds of millions.

In response to the Dridex attacks, the U.K.’s National Cyber Security Centre advises the public to “ensure devices are patched, anti-virus is turned on and up to date and files are backed up”.

Romance scams: In February 2020, the FBI warned U.S. citizens to be aware of confidence fraud that cybercriminals commit using dating sites, chat rooms and apps. Perpetrators take advantage of people seeking new partners, duping victims into giving away personal data. The FBI reports that romance cyber threats affected 114 victims in New Mexico in 2019, with financial losses amounting to $1.6 million.

Emotet malware: In late 2019, The Australian Cyber Security Centre warned national organizations about a widespread global cyber threat from Emotet malware. Emotet is a sophisticated trojan that can steal data and also load other malware. Emotet thrives on unsophisticated password: a reminder of the importance of creating a secure password to guard against cyber threats.

End-User Protection

End-user protection or endpoint security is a crucial aspect of cyber security. After all, it is often an individual (the end-user) who accidentally uploads malware or another form of cyber threat to their desktop, laptop or mobile device.

So, how do cyber-security measures protect end users and systems? First, cyber-security relies on cryptographic protocols to encrypt emails, files, and other critical data. This not only protects information in transit, but also guards against loss or theft.

In addition, end-user security software scans computers for pieces of malicious code, quarantines this code, and then removes it from the machine. Security programs can even detect and remove malicious code hidden in Master Boot Record (MBR) and are designed to encrypt or wipe data from computer’s hard drive.

Electronic security protocols also focus on real-time malware detection. Many use heuristic and behavioral analysis to monitor the behavior of a program and its code to defend against viruses or trojans that change their shape with each execution (polymorphic and metamorphic malware). Security programs can confine potentially malicious programs to a virtual bubble separate from a user’s network to analyze their behavior and learn how to better detect new infections.

Security programs continue to evolve new defenses as cyber-security professionals identify new threats and new ways to combat them. To make the most of end-user security software, employees need to be educated about how to use it. Crucially, keeping it running and updating it frequently ensures that it can protect users against the latest cyber threats.

Security Measures

A state of computer “security” is the conceptual ideal, attained by the use of the three processes: threat prevention, detection, and response. These processes are based on various policies and system components, which include the following:

  • User account access controls and cryptography can protect systems files and data, respectively.
  • Firewalls are by far the most common prevention systems from a network security perspective as they can (if properly configured) shield access to internal network services, and block certain kinds of attacks through packet filtering. Firewalls can be both hardware- or software-based.
  • Intrusion Detection System (IDS) products are designed to detect network attacks in-progress and assist in post-attack forensics, while audit trails and logs serve a similar function for individual systems.
  • “Response” is necessarily defined by the assessed security requirements of an individual system and may cover the range from simple upgrade of protections to notification of legal authorities, counter-attacks, and the like. In some special cases, complete destruction of the compromised system is favored, as it may happen that not all the compromised resources are detected.

Today, computer security comprises mainly “preventive” measures, like firewalls or an exit procedure. A firewall can be defined as a way of filtering network data between a host or a network and another network, such as the Internet, and can be implemented as software running on the machine, hooking into the network stack (or, in the case of most UNIX-based operating systems such as Linux, built into the operating system kernel) to provide real-time filtering and blocking. Another implementation is a so-called “physical firewall”, which consists of a separate machine filtering network traffic. Firewalls are common amongst machines that are permanently connected to the Internet.

Some organizations are turning to big data platforms, such as Apache Hadoop, to extend data accessibility and machine learning to detect advanced persistent threats.

However, relatively few organizations maintain computer systems with effective detection systems, and fewer still have organized response mechanisms in place. The primary obstacle to effective eradication of cybercrime could be traced to excessive reliance on firewalls and other automated “detection” systems. Yet it is basic evidence gathering by using packet capture appliances that puts criminals behind bars.


In order to ensure adequate security, the confidentiality, integrity and availability of a network, better known as the CIA triad, must be protected and is considered the foundation to information security. To achieve those objectives, administrative, physical and technical security measures should be employed. The amount of security afforded to an asset can only be determined when its value is known.

Advertisement