REVERSE NEAREST NEIGHBOURS IN UNSUPERVISEDD DISTANCE-BASED OUTLIER DETECTION

Mr. Pramod.N

PG Scholar, Department of computer science and Engineering, Maharaja Institute of Technology (MIT), Mysore, Karnataka, India

     Prof. Honnaraju.B

Assistant professor, Department of computer Science and Engineering, Maharaja Institute of Technology (MIT), Mysore, Karnataka, India


ABSTRACT:

Outlier detection in high-dimensional data presents various challenges resulting from the “curse of dimensionality.” A prevailing view is that distance concentration, i.e., the tendency of distances in high-dimensional data to become indiscernible, hinders the detection of outliers by making distance-based methods label all points as almost equally good outliers. In this paper, we provide evidence supporting the opinion that such a view is too simple, by demonstrating that distance-based methods can produce more contrasting outlier scores in high-dimensional settings. Furthermore, we show that high dimensionality can have a different impact, by reexamining the notion of reverse nearest neighbors in the unsupervised outlier-detection context. Namely, it was recently observed that the distribution of points’ reverse-neighbor counts becomes skewed in high dimensions, resulting in the phenomenon known as hubness. We provide insight into how some points (antihubs) appear very infrequently in k-NN lists of other points, and explain the connection between antihubs, outliers, and existing unsupervised outlier-detection methods. By evaluating the classic k-NN method, the angle-based technique designed for high-dimensional data, the density-based local outlier factor and influenced outlierness methods, and anti hub-based methods on various synthetic and real-world data sets, we offer novel insight into the usefulness of reverse neighbor counts in unsupervised outlier detection.

Advertisements

Your views and comments are most welcome

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s